高中数学题(三角函数)已知f(x)=√2sin(x+π/4),当xo属于(0,π/4)且f(xo)=4√2/5时,求f(xo+π/6)的值不好意思,没表达清楚,f(xo)=(4/5)√2
2019-06-25
高中数学题(三角函数)
已知f(x)=√2sin(x+π/4),当xo属于(0,π/4)且f(xo)=4√2/5时,求f(xo+π/6)的值
不好意思,没表达清楚,f(xo)=(4/5)√2
优质解答
f(xo)=√2sin(x0+π/4)=4√2/5--〉sin(x0+π/4)=4/5,x0+π/4属于(0,π/4),则
cos(x0+π/4)=3/5
f(xo+π/6)=√2sin(x0+π/4+π/6)=√2(sin(x0+π/4)*cos(π/6)+cos(x0+π/4)*sin(π/6))
=(4*√6+3√2)/10
f(xo)=√2sin(x0+π/4)=4√2/5--〉sin(x0+π/4)=4/5,x0+π/4属于(0,π/4),则
cos(x0+π/4)=3/5
f(xo+π/6)=√2sin(x0+π/4+π/6)=√2(sin(x0+π/4)*cos(π/6)+cos(x0+π/4)*sin(π/6))
=(4*√6+3√2)/10